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We apply the average spectrum method to the problem of getting the excitation spectrum from imaginary-
time quantum Monte Carlo �QMC� simulations. We show that with high-quality QMC data this method
reproduces the dominant spectral features very well. It is also capable in giving information on the spectrum in
regions dominated by the many-particle continuum of excitations.
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I. INTRODUCTION

Quantum Monte Carlo simulations �QMC� have become
the method of choice for studying large equilibrium quantum
many-body systems without approximations. While it is pos-
sible to obtain thermodynamic and static properties to a high
degree of accuracy with QMC, it is almost a paradox that
estimates for the excitation spectrum and the equilibrium dy-
namics are typically obtained with much less accuracy. The
technical reason for this is that QMC is invariably formu-
lated in imaginary instead of real time. This is not just a
matter of choice. In fact the imaginary-time formulation is
necessary to avoid crucial sign problems which would ruin
the statistical accuracy of the method. The difficulty in ob-
taining the dynamics lies in transforming imaginary-time-
correlation functions back to real time. This “Wick rotation”
is easily carried out when an analytical expression of the
imaginary-time-correlation function is known. However,
when only numerical data and their associated error bars are
available, as in QMC, it is well known that the direct trans-
formation is ill defined and very sensitive to the errors.

The common way to deal with this problem is to treat the
transformation to real frequencies as a problem in data analy-
sis where the imaginary-time QMC result plays the role of
the data and the real-frequency spectral function is the
sought-after model underlying the data. The data analysis
problem is approached using Bayesian statistics which aims
at identifying probabilities for different spectral functions
that can account for the observed imaginary-time data. In
finding the best spectral function it is important that the spec-
tral function not only fits the data well but also that it is
consistent with prior knowledge about which types of spec-
tral functions are permissible. The Bayesian statistical frame-
work is well suited for this as both prior knowledge and data
fitting are taken into account.

Although not often coined in the Bayesian language, the
procedure of fitting certain specific functional forms to the
imaginary-time data is an example of Bayesian analysis
where the prior probability distribution assigns equal prob-
abilities to spectral functions of the specific functional form
and the fitting procedure selects the best functional param-
eters. However, fitting to a certain class of functions assumes
a rather high degree of prior knowledge. While such knowl-
edge should be used whenever available it is not so common
that one actually knows the exact functional form of the

spectral function a priori.
It is more often the case that one does not know the actual

shape of the spectral function but only knows certain sum
rules and physical requirements such as real valuedness and
positivity. One should then prefer a prior probability distri-
bution that takes only into account the prior knowledge and
does not make extra assumptions. Such a maximally non-
committal prior probability distribution is gotten by maxi-
mizing the entropy of the distribution under constraints com-
ing from the specific a priori knowledge.1,2 In carrying out
such a maximization it is important to consider the correct
space to perform it in. A probability distribution of spectral
functions is clearly multidimensional. Yet it is customary to
treat the spectral function itself as a one-dimensional prob-
ability distribution and choose a prior probability distribution
that gives a high probability to spectral functions having a
large entropy.3 Thus instead of maximizing the entropy of the
multidimensional probability distribution of spectral func-
tions, the entropy of the spectral function itself is maximized.
The latter is not the maximally noncommittal probability dis-
tribution taking into account only positivity and sum rules. In
fact, arriving at this so-called entropic prior involves addi-
tional assumptions,4 which applicability to the problem at
hand is questionable, and often one finds that methods using
the entropic prior give too broad spectral features. In this
paper we favor the use of another less-constraining prior
which reflects explicitly what a priori information is in-
cluded.

In this paper we use the average spectrum method �ASM�,
first proposed in Ref. 5, where the posterior probability dis-
tribution is composed of a likelihood function and a weakly
constraining prior. In the ASM the final spectrum is obtained
as the average spectrum over this a posteriori probability
distribution, thus the name ASM. We show examples of its
use in getting not only the dominant features of the excita-
tion spectra of quantum many-body models but also to a
certain extent its subdominant features.

This paper is structured as follows. In Sec. II the Bayesian
method is reviewed and the prior probability distribution is
presented. The ASM is explained in Sec. III, and the particu-
lar Monte Carlo implementation of it used in this paper is
described in Sec. IV. In Sec. V the ASM is applied to several
different quantum spin systems. The paper ends with a sum-
mary.
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II. BAYESIAN METHOD

The equilibrium dynamics of a physical system is charac-
terized by the spectral function A��� which is real and non-
negative. However, in QMC what is typically obtained is an
imaginary-time-correlation function G��� which is related to
the spectral function as

G��� =� d� K��,��A��� , �1�

where the kernel of the transform K�� ,�� takes on different
forms depending on whether the operators in the measured
correlation function are fermionic or bosonic. In order to
make the discussion definite and practical we will model the
spectral function as a collection of N delta functions on a
frequency grid �i,

A��� = �
i=1

N

A�i
��� − �i� , �2�

where all A�i
are positive or zero. We will take a regularly

spaced frequency grid such that �i is independent of i up to
a frequency cutoff �max which is chosen to be several times
the bandwidth of the system in question. This choice of fre-
quency grid is not necessarily an optimal choice as it might
be more effective to choose a finer grid where the spectral
function is varying most. However, in the absence of such a
priori information the choice of a uniform grid up to a large
cutoff value is reasonable.

Furthermore we will assume that G��� is obtained in
QMC simulations and recorded at discrete imaginary times �.
With this Eq. �1� takes the form

G� = �
i

K�,�i
A�i

. �3�

The goal is to invert this relation. This is an ill-posed prob-
lem because of the near-zero eigenvalues of the kernel and
therefore very sensitive to statistical errors of G�.

In the Bayesian approach one instead attempts to find the
probability of a particular spectral function A given the QMC
imaginary data G and prior knowledge. This posterior prob-
ability P�A �G� can be expressed using Bayes theorem as

P�A�G� � P�G�A�P�A� , �4�

where P�G �A� is the likelihood that the QMC data turn out
to be G given a particular spectral function A and P�A� is the
prior probability distribution of the spectral function. The
prior probability distribution encodes the knowledge we have
about the spectral function A before any QMC data are ob-
tained.

Equation �4� raises the question of how to concretely ex-
press the prior probability distribution P�A�. We will use the
following expression:

P�A� � ���
i

K0�i
A�i

− G0��i��A�i
� , �5�

which assigns equal probabilities to all spectral functions
that satisfy the non-negativity requirement �A�i

�0� and the
zero-moment sum rule �iK0�i

A�i
=G0. In Eq. �5� ��x�=1 for

x�0 and zero otherwise. The product of � functions incor-
porates the knowledge that all spectral components must be
non-negative, and the � function constrains the spectra to
obey the zero-moment sum rule. Higher-order sum rules can
be implemented by multiplying by more � functions. This
prior probability distribution is the probability distribution
having the highest entropy consistent with the requirement of
the non-negativity constraint and the zeroth moment sum
rule. It is therefore not a very selective probability distribu-
tion as it gives the same probability to any spectral function
that satisfies the sum rule and is non-negative.

III. AVERAGE SPECTRUM METHOD

Given the weak discriminating nature of the prior �5� it is
not a good idea to pick as the final answer the spectral func-
tion that maximizes the posterior probability distribution. It
is rather obvious that the spectrum obtained in that way will
overfit the data in the sense that it will also fit the noise.
Instead we will pick as the final answer the average spectral
function obtained by averaging over the posterior
distribution.5 Thus we will compute

Ā =� dA AP�A�G�/� dA P�A�G� . �6�

The averaging procedure itself will protect against overfitting
the data. The averaging procedure tends to smooth out the
spectral function, and in fact, it has been shown that when
the average is carried out within the mean-field approxima-
tion the result is identical to the classic maximum entropy
�MaxEnt� methods result.6 However, in general the methods
yield different results.

It is appropriate here to compare and contrast the ASM to
the more commonly used MaxEnt methods.3 The methods
differ in that in MaxEnt methods an entropic prior is as-
sumed for the spectral function and not the prior specified in
Eq. �5�. In MaxEnt methods the entropic prior is multiplied
by a factor � which determines how much influence it has
compared to the likelihood function. Different MaxEnt meth-
ods differ on how the final answer for the spectral function is
arrived at. In the classic MaxEnt method the probability dis-
tribution for the parameter � �	���	 is determined by Baye-
sian inference and the final answer is picked as the spectral
function corresponding to the value of � that maximizes this
probability distribution. Bryan’s MaxEnt method,7 on the
other hand, is more similar to the ASM method as there the
final spectrum is obtained by averaging the different spectral
functions obtained at different values of � over 	���. This
can either be done by computing 	��� directly for a range of
�’s and averaging their spectra or by using a Monte Carlo
procedure as shown in Ref. 8.

Taking the average as the final answer is appropriate when
the posterior probability has a single prominent peak. How-
ever, when there are more peaks the meaning of the average
becomes more questionable. In order to detect such multiple
peak situations one can focus on a few spectral features and
make histograms of these according to the posterior prob-
ability distribution and check for multiple peaks in these his-
tograms.
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The averaging procedure can be efficiently carried out
using Monte Carlo methods. In the context of getting dynam-
ics from QMC this approach is known as the average spec-
trum method5 or Stochastic continuation;9 but it is also used
for data analysis in many other fields, see for instance Refs.
10 and 11, where it is generally known as Markov chain
Monte Carlo methods.

To compute the posterior probability P�A �G� we also
need the likelihood function P�G �A�. Assuming that the
imaginary-time data is distributed as Gaussians with a cova-
riance matrix �, the likelihood function P�G �A� is

P�G�A� 
 exp�−
1

2
Tr�

i

�Gi − GA�T�−1�Gi − GA�� , �7�

where we have denoted by Gi a vector of imaginary-time
values G�

i that is the average result of the ith bin of QMC
data containing M measurements. The assumption of having
Gaussian data should be good for large amount of data; how-
ever, this assumption should always be checked for instance
by monitoring skewness and kurtosis. Similarly we denote
by GA a vector with components

GA� = �
j

K��j
A�j

�8�

coming from a particular spectral function A�. In total there
are n bins of QMC data; and for large n, � can be approxi-
mated by the measured covariance matrix having compo-
nents


kl 
1

n − 1�
i

�G�k

i − Ḡ�k
��G�l

i − Ḡ�l
� , �9�

where we have denoted by an overbar the total mean of the
QMC data

G =
1

n
�

i

Gi. �10�

It is useful to express the posterior probability in terms of
this total mean. Using the cyclic property of the trace the
exponent can be written as

Tr �−1�
i

�Gi − G + G − GA��Gi − G + G − GA�T

= Tr �−1�
i

�Gi − G��Gi − G�T

+ n Tr�G − GA�T�−1�G − GA� . �11�

The first term is independent of the model A and contributes
only to the normalization; thus,

P�G�A� � e−�1/2�n Tr�G − GA�T�−1�G−GA�. �12�

Note the explicit factor of n which makes the distribution
more peaked as it increases. Thus for more accurate QMC
data �larger n� a spectral function that fits the data well be-
comes increasingly more likely than one that does not fit so
well. This factor of n reflects the well-known fact that the
variance of the mean value is down by a factor 1 /n. The
value of n is of course rather meaningless without also speci-

fying the number of measurements Nmeas in each QMC bin,
which determines the magnitude of the components of 
.
However, for a fixed large-enough value of Nmeas, 
 is
largely independent of n; thus, the explicit factor of n reflects
accurately how the likelihood function sharpens up when
more measurements of QMC data are made.

IV. MONTE CARLO IMPLEMENTATION

The task of sampling the posterior distribution can be
done efficiently using a Monte Carlo simulation that samples
the distribution P�A�e−�E�A�. P�A� is the prior probability and
the energy E�A� comes from the likelihood function and is

E�A� =
1

2
n Tr�G − GA�T�−1�G − GA� �13�

and �=1.
In devising a Monte Carlo procedure one can choose the

probability of accepting another spectral function A� as

p�A → A�� = P�A��min�1,e−��E�A��−E�A�	� . �14�

To implement the prior probability P�A� according to Eq. �5�
one starts with a spectral function that is positive everywhere
and satisfies the sum rule. In subsequent Monte Carlo moves
one simply does not accept spectral functions which violate
the positivity and the sum rule. Thus P�A� is unity for al-
lowed spectral functions and zero otherwise. Typically a
simulation is started with all spectral weight concentrated at
one frequency. In a Monte Carlo move spectral weight is
shared between neighboring frequencies in the following
manner. First a pair of neighboring frequencies �i and �i+1 is
chosen at random, and the contribution to the zero-moment
sum rule from the spectral weights at these frequencies is
computed as c0=A�i

K0�i
+A�i+1

K0�i+1
. Then a random num-

ber r is selected in the interval �−c0 ,c0	, and new spectral
weights

A�i
� = A�i

+ rK0�i+1
/�K0�i

+ K0�i+1
�

A�i+1
� = A�i+1

− rK0�i
/�K0�i

+ K0�i+1
� �15�

are proposed. Note that the zero-moment sum rule is un-
changed as A�i

K0�i
+A�i+1

K0�i+1
=A�i

� K0�i
+A�i+1

� K0�i+1
. This

proposed move is accepted with the probability specified in
Eq. �14�. In particular, if either of the A�s are negative the
proposed move is rejected. Note that for detailed balance to
hold in this scheme c0 must not change in a Monte Carlo
move. For closely spaced frequencies this Monte Carlo move
has a good acceptance rate. To further ensure that the simu-
lation does not get stuck in a local energy minimum we
combine this move with a parallel-tempering scheme in
which several simulations of the system are simultaneously
carried out at different temperatures 1 /� and a swapping
move between different temperature configurations is in-
cluded. In order to optimize the list of temperatures we have
used the scheme in Ref. 12 where the maximum movement
of configurations from the highest to the lowest temperatures
is achieved.
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In Ref. 9 it was suggested that the entropy of the averaged
spectrum be plotted vs � and the final spectrum would be
selected as the average at a value of � just before the entropy
makes a final drop at high values of �. We do not adopt such
a procedure here as we find it undesirable to have a proce-
dure for selecting the spectral function that depends on prop-
erties of the spectral function itself. Even though a high
value of � gives solutions close to the most probable one,
there are no guarantees that the correct spectrum will not
have a low entropy as is the case if the spectrum is well
approximated by a single or a few narrow peaks. A similar
criterion was proposed in Ref. 6 where the value of � corre-
sponding to a jump in the specific heat was chosen.

Instead we take the point of view that the final answer is
the average spectrum at �=1, which corresponds to the pos-
terior distribution.5 This means that the resulting spectrum
will depend on the accuracy of the input data n. This is
advantageous as it provides a mechanism against overinter-
preting low-quality data. However, it also means that one
needs to monitor how larger values of n will influence the
final result. Thus a convergence analysis with n is required.
This makes the method rather dependent on efficient QMC
algorithms as generally large values of n are needed.

V. APPLICATIONS

For neutron scattering the experimentally relevant mea-
sured quantity is the dynamic structure factor

Sq
ij��� = �

−�

�

dt ei�t�Sq
i �t�S−q

j �0�� , �16�

where the superscripts i , j indicate spin-polarization direc-
tions being either x, y,or z and Sq

i �t� is the ith polarization
component of the spin operator in the Heisenberg represen-
tation at momentum q. For convenience we will choose units
such that the lattice spacing is 1. In QMC the accessible
counterpart to the dynamic structure factor is the imaginary-
time-correlation function

S̃q
ij��� = �Sq

i ���S−q
j �0�� . �17�

Using the Lehmann representation one finds that Sij and S̃ij

are related by

S̃q
ij��� = �

0

� d�

2	
�e−�� + e−�−����Sq

ij��� , �18�

where  is the inverse temperature. Thus the kernel K�� in
Eq. �3� is

K�� = �
1

2	
, � = 0

1

2	
�e−�� + e−�−���� , � � 0.� �19�

A. Antiferromagnetic dimer in a magnetic field

In order to check the suitability of the ASM for finding
the spectral function we do a test on a simple system with a

nontrivial spectrum having two peaks. We choose the trivial
Hamiltonian of two spins in a magnetic field B,

H = JS�1 · S�2 − B�S1
z + S2

z� . �20�

The dynamic structure factor of the transverse field compo-
nents S	

xx��� displays delta-function peaks at �=J�B each
of weight 	 / �4�1+e−J�1+2 cosh B�	� which becomes 	 /4
at low temperatures.

We simulated this two-spin Hamiltonian at an inverse
temperature J=10 using the stochastic series-expansion
QMC method13 with directed loop updates.14 In the simula-
tions we extracted the imaginary-time-correlation function in
the x direction at momentum vector 	. The imaginary-time
data were obtained on an equally spaced grid with 101 points
from 0 to  /2, and the relative error of the imaginary-time
data ranged from 
10−5 at small � to 
10−2 at �= /2. The
imaginary-time data were then used as input to the ASM
program where we used a regular grid with 200 frequencies
having spacing ��=0.01J.

The results for the magnetic-field value B /J=0.1 are
shown in Fig. 1. This result is compared to the spectrum
obtained from the same QMC data using Bryan’s MaxEnt
method. All methods using the entropic prior gives a possi-
bility of including a default model, so that the entropy is
maximized when the spectral function matches the default
model. We have used a flat model here as that corresponds
most closely to our ASM choice of putting in minimal prior
information. The curves in Fig. 2 were obtained using codes
based on Ref. 3.

From Fig. 1 we see that both methods are able to resolve
the peaks even though the separation 2B /J=0.2. The peak
locations correspond well to the true value for both methods,

0 1 2
ω[J]

0

10

20

30

40

S
xx π(ω

)

ASM
MaxEnt (Bryan)

0 1 2
ω[J]

0

π/4

π/2

∫ω 0
dω

´S
xx π(ω

´)

FIG. 1. Real-frequency dynamic structure factor S	
xx��� obtained

from ASM �solid line� and MaxEnt �dashed line� for the two-spin
Hamiltonian. The magnetic-field value B /J=0.1. The inset shows
the integrated spectrum for the ASM curve.
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but the ASM peaks are a bit narrower than the MaxEnt
peaks.

While the ASM gives rather sharp peaks, the two peaks
are not equal as dictated by the exact solution. There is a
tendency that the high-energy peak is lower and broader than
the low-energy peak. This is also seen for the MaxEnt peaks.
The spectral weight is however equally distributed on the
two peaks in both the low- and the high-field cases �see inset
of Fig. 1�. We expect that the peaks become more and more
equal as the quality of the QMC data is increased �larger n�.
This has the effect that the likelihood function becomes more
peaked and more details of the spectrum will be better re-
solved. An example of this is shown in Fig. 2 where it is
clear that the double-peak structure is only revealed for data
of sufficient quality.

We have also simulated the dimer system with a bigger
value of the magnetic field, B=0.4J. For this value of B the
peaks at �=0.6J and 1.4J are very narrow in both the ASM
and Bryan’s MaxEnt method.

B. Spin-1 chain

We now move on to a nontrivial example—the spin-1
antiferromagnetic chain, which is the so-called Haldane
chain. The Haldane chain is famous for being gapped in
contrast to the half-integer spin chains.15 The minimum gap
is at Q=	 in units of the inverse lattice spacing. Figure 3
shows plots of SQ=	

zz ��� for different temperatures obtained
using the ASM. Note how the peak position and width in-
crease with temperature. To compare with MaxEnt we have
shown the MaxEnt result using Bryan’s method for a single

temperature T /J=0.25 as a dashed curve. Note that the Max-
Ent curve captures the peak position well but gives a very
broad peak. The inset shows a comparison of the temperature
dependence of the gap vs a nonlinear sigma model prediction
which was obtained by solving the finite temperature gap
equation in Ref. 16 numerically. In the inset we also show a
comparison of the width of the peaks, quantified by their full
width at half maximum �FWHM�, with predicted values
from a combined nonlinear � model and scattering matrix
calculation.17 The agreement is quite remarkable and in-
volves no adjustable parameters.

One can ask whether the temperature broadening of the
peak seen in Fig. 3 obtained using the ASM is just due to the
“motion” of a single sharp peak. Figure 4 shows that this is
not the case.

0.6 1 1.4
0

0.1

0.2

0.3

S
xx π(ω

)

0.6 1 1.4
ω[J]

0.6 1 1.4

n=4 n=10 n=20

FIG. 2. �Color online� The effect of improving the data quality
by increasing the number of Monte Carlo bins n. Each panel shows
the dynamic structure factor for B=0.1J for three independent data
set �different line styles�. The number of data bins were n=4 �left�,
10 �middle�, and 20 �right�. For comparison the results shown in
Fig. 1 were carried out using n=200.
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FIG. 3. �Color online� Dynamic structure factor S	
zz��� for a 1D

spin chain with 64 sites obtained from the ASM �solid lines� at
different temperatures indicated by the legends. The dashed curve is
the MaxEnt result for T /J=0.25. The curves for T /J=0.0625 and
0.125 have been scaled down by a factor of 1/2 to fit inside the
figure boundaries. The inset shows the peak positions � �circles�
and peak widths FWHM �triangles� as functions of temperature.
The solid lines are the �-model predictions for these quantities.
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FIG. 4. Snapshots of spectra. These spectra �and others� are
averaged over in order to yield the result shown in Fig. 3. The
spectra here are all for T /J=0.25.
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C. Bond alternating antiferromagnetic chain

Another nontrivial spin model is the bond alternating
spin-1/2 Heisenberg chain �BAHC� which has been studied
extensively and is relevant for materials such as
Cu�NO3�2 ·2.5D2O,18–20 the spin-Peierls material CuGeO3,21

and others �see Ref. 22�. The Hamiltonian for the BAHC is

H = J�
i

�S�2i−1 · S�2i + �S�2i · S�2i+1� , �21�

where ��0. Although the BAHC is a one-dimensional
model, it is not solvable by the Bethe ansatz. Thus other
techniques are needed to obtain the dynamics. In this regard
investigations using bosonization,23 random phase approxi-
mation �RPA�,24 series expansions,22,25–30 and exact diago-
nalization studies31 have produced very impressive results
for the dynamics of the BAHC containing predictions of the
dispersion of one-magnon excitations as well as bound states
and details about multiparticle excitations.

We carried out QMC simulations of the BAHC for a chain
with 128 sites and periodic boundary conditions at inverse
temperature J=16 and �=0.8. The ASM was used to obtain
the spectra at all momentum points. Figure 5 shows a gray-
scale plot of SQ

zz��� for different values of Q and �. The
one-magnon excitations are easily identified as the sharp
dark feature and agree very well with that obtained from
series expansion to the order �5 �Ref. 22� �shown as the blue
solid curve�. For Q�0.5	 many-particle excitations are vis-
ible. This agrees qualitatively with the results in Ref. 30
which shows that the many-particle continuum has apprecia-
bly more spectral weights for Q�0.5	 than for smaller Q.
For 0.5	�Q�0.75	 there is an almost flat feature in the
continuum at �
1.9J which is well separated from the band
of one-magnon excitations and also from the kinematic

boundaries of two-magnon excitations shown as blue dotted
lines. This is not seen from the series-expansion30 and RPA
results24 which predict that the continuum should have big-
gest spectral weight at its lower boundary. However, this
feature is reminiscent of that seen in experiments on
Cu�NO3�2 ·2.5D2O �Ref. 20� where a dispersionless feature
in the continuum was reported. As Q is increased toward 	
this feature broadens and vanishes. Some structures reappear
in the continuum close to Q=	 where a peak at �
J and a
very weak feature at �
2J are seen. A word of caution is
needed in interpreting weak features of Fig. 5. This is be-
cause Fig. 5 also shows occurrence of spectral weight in
between the one-magnon peak and the lower kinematic
boundary of the two-magnon excitations, where one expects
a gap. This is probably caused by insufficient quality of the
QMC data which give spectral weight in unwanted places in
a similar fashion to what is seen in Fig. 1 at �
J for B
=0.1J.

The QMC data plotted in Fig. 5 were taken from a run
with in all n=2000 data bins. In order to see how the number
of QMC bins affects the line shapes we show in Fig. 6 the
dynamic structure factor at Q=3	 /4 for three different val-
ues of n. While there is some significant change in the line
shape from n=20 to 200, increasing n to 2000 has only mi-
nor effects.

We will now add a magnetic-field term −B�iSi
Z to Eq.

�21�. For �=0 the BAHC is just a collection of independent
antiferromagnetic dimers. When subjecting a dimer to a
magnetic field in the spin-z direction, the degeneracy of the
spin triplet excitations is lifted and one expects a double-
peak structure, as seen in Fig. 1, in the transverse dynamic
structure factor Sxx. For finite � the dimers become coupled;
however, one still expects the splitting to occur at least for
small values of the magnetic field. Figure 7 shows a gray-
scale plot of SQ

xx��� for �=0.8 and a small value of the mag-
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FIG. 5. �Color online� Grayscale plot of SQ
zz��� for the BAHC

with �=0.8. The simulations were carried out at J=16 on a lattice
with 128 sites and periodic boundary conditions. The solid blue
curve indicates the one-magnon excitations as calculated using a
series expansion about the dimer limit �Ref. 22� and the dotted lines
show the kinematic boundaries of two-particle excitations.
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FIG. 6. �Color online� Line shapes at a fixed momentum Q
=3	 /4 for QMC data sets of different lengths n indicated by the
legends.
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netic field B=0.2J. The splitting of the one-magnon peak is
clearly seen and agrees, for small values of Q, well with the
expectation that the effect of the magnetic field is simply to
displace the one-magnon dispersion by �B. The solid lines
indicate this. We have taken the one-magnon dispersion from
the series expansion22 and added �subtracted� an energy B
=0.2J. For 0.5	�Q�0.75	 there are deviations from this
simple picture, as the upper branch is higher in energy and
broadens considerably. For even higher momentum values
there is significant broadening of the peaks and at Q=	 they
are hardly distinguishable. For Q�0.75	 one can also see
the appearance of many-particle excitations above the one-
magnon peaks.

For a large value of the magnetic field the lower branch
goes to zero energy at a certain characteristic value of the
momentum. Figure 8 shows a grayscale plot of the transverse
structure factor SQ

xx��� for �=0.8 and B=J. One can clearly
see that there is a branch of excitations that approaches zero
at Q0.3	 and at Q=	. This is consistent with the results
reported in Ref. 32. It is also apparent that the intensity at
Q0.3	 vanishes as the energy approaches zero, while the
intensity at Q=	 is high. The high-energy magnon branch is
clearly seen for Q�0.6	 and gets broadened considerably
and disappears for larger Q. There is also a sharp finite-
energy peak seen at small Q resulting from the merger of the
two magnon branches.

D. Heisenberg antiferromagnetic chain

The spin-1/2 Heisenberg chain was the first nontrivial
quantum many-body problem to be solved exactly.33 Yet it is
still only recently that exact results for the dynamical corre-
lation functions have appeared.34 We compare here the ASM
with the exact numerical result for the dynamic structure
factor for the Heisenberg antiferromagnetic chain.

In Fig. 9 we show the line shape of Szz�Q ,�� at Q
=0.5	, where the gap is the largest, as well as at Q=0.9	

where the exact result has a very long high-energy tail. We
see that the exact results �red dashed curves� are zero up to a
certain energy where a vertical leading edge marks the onset
of a continuum of excitations. The ASM results have no true
vertical leading edge but rather a power-law increase. This
smooth increase is inevitable in the ASM method as even a
prior that incorporates a strict requirement of having a verti-
cal leading edge will give a smooth leading edge if there is
uncertainty about the position of the edge. There is also a
slight difference in the location of the maximum intensity.
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FIG. 7. �Color online� Grayscale plot of SQ
xx��� for the BAHC

with �=0.8 in a magnetic field B=0.2J. The inverse temperature is
J=16 and L=128. The solid lines are the spin-split one-magnon
result.
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FIG. 8. Grayscale plot of Sxx�Q ,�� for the BAHC in a magnetic
field B=J. �=0.8, J=16, and L=128.
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FIG. 9. �Color online� Line shapes of Szz�Q ,�� for the 1D
Heisenberg antiferromagnet at Q=0.5	 �upper panel� and 0.9	
�lower panel� solid curves. The red dashed lines are exact results
obtained from the Bethe ansatz. The chain has periodic boundary
conditions and has L=500 sites. The QMC simulations are carried
out at J=40 while the Bethe ansatz result is obtained at T=0. The
insets show the same results but on a semilogarithmic scale.
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While the exact results peak right at the leading edge, the
ASM results peak slightly above the exact results. This is
most prominent in the Q=0.5	 case and is probably because
the true line shapes are very asymmetric and tend to push up
the peak in energy. This asymmetry can also be seen in both
ASM curves. The extent of how high up in energy the con-
tinuum reaches can be seen from the insets. The high-energy
tail is very well reproduced by the ASM for Q=0.9	 while it
is overestimated for the Q=0.5	 case.

E. Square lattice Heisenberg antiferromagnet

The spin-1/2 square lattice Heisenberg antiferromagnet
�2DAF� has been studied intensively because of its relevance
to the cuprate materials that are superconducting at high tem-
peratures when doped. The dynamics of the 2DAF is rather
well described by linear spin-wave theory.35 However, linear
spin-wave theory does not account for a magnon dispersion
along the zone boundary. Such a dispersion was predicted
using an expansion around the Ising limit29,36 and indicated a
difference in energy between the magnon peaks at �	 ,0� and
�	 /2,	 /2� of about 7%–9%, with the energy at �	 /2,	 /2�
being the highest. Similar result was obtained using QMC. In
Ref. 37 the QMC data were fitted to a functional form con-
sisting of a delta function and a broad continuum, while in
Ref. 38 the MaxEnt method was used. Higher-order
Holstein-Primakoff spin-wave calculations give a smaller
value of 2%,39 as does an expansion based on the Dyson-
Maleev transformation.40,41

Experimental measurements of the material copper for-
mate tetradeuterate �CFTD� �Refs. 42 and 43� indicated a
difference of 7% in agreement with the series-expansion re-
sults and the QMC; however, La2CuO4 shows44 an entirely
different dispersion with the peak at �	 ,0� being higher in
energy than at �	 /2,	 /2�. This dispersion has been ex-
plained as special features of the Hubbard model.45 Recently
experiments on K2V3O8, also supposedly a realization of the
Heisenberg antiferromagnet on the square lattice, showed a
double-peak structure of unknown origin at �	 /2,	 /2�.46 In
order to investigate this possible double-peak structure we
repeated the simulations of Ref. 37 and analyzed the
imaginary-time data using the ASM which gives unbiased
information about the line shapes. In order to distinguish
transversal and longitudinal excitations the simulations were
carried out as in Ref. 37 by imposing a staggered magnetic
field Hstag=0.001 615 that yields a staggered magnetization
consistent with the experimental value ms=0.307 on a 32
�32 lattice at an inverse temperature J=32. We measured
both the transverse dynamic structure factor Sxx and the lon-
gitudinal one Szz. The results for the two momentum points
Q= �	 ,0� and �	 /2,	 /2� are shown in Fig. 10. We observe
a difference in magnon energies in the transverse channel
corresponding to �E�	/2,	/2�−E�	,0�� /E�	/2,	/2�6%, which is
determined from the location of the maximum. However, the
peak locations are at slightly higher energies than the corre-
sponding delta-function locations found in Ref. 37. As we
expect a priori that the dynamic structure factor in the trans-
verse channel contains a delta-function-like one-magnon
peak and a continuum. We believe that the result in Ref. 37 is

the most accurate as it accounts for more prior information.
However, for the longitudinal channel the expected func-
tional form of the spectral function is not so clear. In particu-
lar it is not obvious that the particular functional form chosen
in Ref. 37 in the longitudinal channel is flexible enough to
track the real line shape. In fact, in contrast to the result
reported there, at Q= �	 /2,	 /2�, the lower panel of Fig. 10
shows that the peak location in the transverse channel is at a
substantial lower energy �
10%� than the peak in the longi-
tudinal channel. For an experiment that measures both the
longitudinal and transverse structure factors simultaneously,
this could give rise to a double-peak structure at �	 /2,	 /2�.
Such a double peak should also be apparent at �	 ,0�, al-
though more weakly, because the longitudinal structure fac-
tor is more strongly peaked at �	 /2,	 /2� than at �	 ,0�. In
fact, as can be seen from Fig. 10 the longitudinal dynamic
structure factor at �	 ,0� has a very long high-energy tail.

VI. SUMMARY

Obtaining equilibrium dynamics from numerical
imaginary-time-correlation functions is an important task.
We have investigated in this paper the suitability of a specific
Bayesian method for doing this. This method, known as the
ASM,5 proposed already in 1991 has not been widely used.
We suspect that this is because its nature is such that for it to
give good results one needs rather accurate QMC data. How-
ever, QMC simulations have improved considerably over the
last years; thus, it is timely to reconsider its usefulness. The
ASM is a Bayesian data analysis method, where instead of
picking the final result as the spectrum that maximizes the
posterior probability distribution, the final answer is picked
as the averaged spectrum over the posterior probability dis-
tribution. The reason for selecting taking the average is the
rather unselective nature of the specific prior probability dis-
tribution used. We argue for the use of a prior probability
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FIG. 10. Transverse �solid curves� and longitudinal �dashed
curves� dynamic structure factors for the 2DAF at Q= �	 ,0� �upper
panel� and �	 /2,	 /2� �lower panel�.
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distribution that encodes just hard knowledge; spectral posi-
tivity and sum rules, and the specific form of the prior is then
the one maximizing the information theory entropy under
these constraints. One should note that this prior is not the
entropic prior used in various MaxEnt methods. The entropic
prior gives high probabilities to spectral functions that them-
selves have high entropy, thus favoring smooth spectral func-
tions.

There are other methods that resemble the ASM. The Sto-
chastic continuation method9 is essentially the same method
except for the use of a drop in entropy as the criterion for
determining the temperature at which the sampling is carried
out. In the ASM the posterior probability distribution is
sampled directly. Thus in essence the quality of the input
data determines the effective sampling temperature which is
implicit in the approach. We find this desirable as it protects
from over interpreting bad data and makes the procedure
independent of the particular form of the spectral function
itself. However, this also implies the need of a convergence
analysis of the obtained spectral function with increasingly
better QMC data. Some MaxEnt methods, such as the Bryan
MaxEnt method, also output as the final answer an averaged
spectrum. In the case of Bryan’s method7 the average is
taken over the probability distribution of the coefficient de-
termining the relative importance of the entropic prior.

The ASM is on at least as firm statistical footings as other
Bayesian methods.3 It has the disadvantage of being compu-
tationally demanding; however, it is not as computer inten-
sive as the QMC simulations themselves. A typical run of the
ASM, for one momentum space point, takes about 4 h on an
Intel Pentium IV 2.4 GHz processor. In comparison running
MaxEnt methods takes typically of the order of tens of sec-
onds.

In showing examples of the ASM we have sampled the
posterior probability distribution and obtained spectral func-
tions for several model systems. Of another results we have
shown that using this method we can obtain the finite tem-
perature position and broadening of the Haldane gap in

spin-1 antiferromagnets and that the results agree very well
with nonlinear �-model predictions without any adjustable
parameters. We have also applied the method to the spin-1/2
Heisenberg chain with alternating bond strengths where we
found a quantitative very good agreement with other meth-
ods for the dispersion of one-magnon excitations. We also
observed some structure in the continuum of many-particle
excitations which have not been seen using other methods.
At present it is unclear whether these many-particle features
are real or whether they are artifacts of insufficient QMC
data. We have also added a magnetic field to the bond alter-
nating chain and observed the expected spin-split spectrum
in the transverse dynamic structure factor. For a bigger value
of the magnetic field we also see the weak incommensurate
low-energy mode and the much stronger low-energy mode at
Q=	. We have compared the ASM for the 1D Heisenberg
antiferromagnet with exact Bethe ansatz results. The com-
parison reveals a good similarity, although certain sharp fea-
tures of the exact result, such as the line shape’s vertical
leading edge, are not accurately reproduced by the ASM.
Finally we studied the dynamic structure factor at the zone
boundary for the two-dimensional square lattice spin-1/2
Heisenberg antiferromagnet and found results consistent with
existing results on that system except for a difference in peak
locations of the transverse and longitudinal dynamic struc-
ture factors at the same momentum value that can possibly
give rise to a double-peak structure in measurements using
unpolarized neutrons.
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